RTM Meets All of These Requirements1. Data used in the analysis should be reliable and valid (i.e., content and construct validity). The data sets and their sources should allow for replication and continued forecasting. This includes the requirement that the forecast technique does not rely heavily on the outcome of interest (i.e., the dependent variable) to be the predictor (i.e., independent variable). Such a forecasting technique would not be sustainable if it were both actionable and successful since outcomes would ultimately be prevented.
2. The outputs of the forecast should be operational. It should be reasonably clear what to do with the information to respond to the forecasted effects. Knowing where to go is a start. But forecast outputs should also inform decisions about what to do when you get there. 3. The method of the forecast should be operationalized consistently from one instance to the next. Data sets and sources may change, as will analysts, etc., but the reliability of the forecasting method must withstand multiple iterations, in different settings, by different people, and for different types of outcome events. 4. The elements of the forecast should be articulable, with the importance of each factor relative to one another directly measured. The direct impact of key factors on outcomes should be demonstrable (i.e., internal validity). 5. The output results should be within a range of reasonable expectations (i.e., face validity). The forecasting process should be able to justify why a result was produced or else the forecasting process should be able to be revised in a non-arbitrary way. 6. The method of the forecast should be able to tolerate the products of successful interventions. Especially those that are based on the intel from prior forecast iterations. Basically, any successful forecast should yield valuable information that can be operationalized for preventative action. However, if the preventive action is successful at reducing crime incident counts and/or changing their spatial patterns, then it could directly affect the precision/accuracy of future forecast iterations. This is why a successful forecasting technique should be able to tolerate the products of successful interventions. |